

previous input goes in. Completely static, prebuilt model processes it and comes up with a probability distribution.
There is no “unlike markov chains”. They are markov chains. Ones with a long context (a markov chain also kakes use of all the context provided to it, so I don’t know what you’re on about there). LLMs are just a (very) lossy compression scheme for the state transition table. Computed once, applied blindly to any context fed in.
their input is the context window. Markov chains also use their whole context window. Llms are a novel implementation that can work with much longer contexts, but as soon as something slides out of its window, it’s forgotten. just like any other markov chain. They don’t adapt. You add their token to the context, slide the oldest one out and then you have a different context, on which you run the same thing again. A normal markov chain will also give you a different outuut if you give it a different context. Their biggest weakness is that they don’t and can’t adapt. You are confusing the encoding of the context with the model itself. Just to see how static the model is, try setting temperature to 0, and giving it the same context. i.e. only try to predict one token with the exact same context each time. As soon as you try to predict a 2nd token, you’ve just changed the input and ran the thing again. It’s not adapting, you asked it something different, so it came up with a different answer